การวิเคราะห์การสร้างเอนโทรปีของอิเล็กโทรดที่มีรูพรุนในอุปกรณ์พลังงานไฟฟ้าเคมี
หัวหน้าโครงการ
ผู้ร่วมโครงการ
ไม่พบข้อมูลที่เกี่ยวข้อง
สมาชิกทีมคนอื่น ๆ
รายละเอียดโครงการ
วันที่เริ่มโครงการ: 01/10/2024
วันที่สิ้นสุดโครงการ: 30/09/2025
คำอธิบายโดยย่อ
The improvement of reaction-diffusion systems, particularly in porous electrodes of electrochemical devices, has been a subject of significant interest, focusing on altering the spatial distribution of porosity within the porous media. Numerous studies have delved into this area, seeking to optimize the performance of such systems. However, a critical challenge has been the lack of comprehensive understanding regarding the transport phenomena in electrodes and their implications on system irreversibilities. Consequently, research has advanced without a clear grasp of the theoretical limitations of potential enhancements. One promising avenue to address this limitation is through the application of topology optimization. This approach aims to maximize the overall reaction within the system by strategically modifying the spatial distribution of porosity in porous media. Nonetheless, it is important to note that the solutions derived from topology optimization are based solely on mathematical foundations, and a deeper understanding of their physical implications is necessary. To bridge this gap between mathematical optimization techniques and well-established theoretical principles, this study introduces a novel perspective. It presents topology optimization for the design of the diffusion field in reaction-diffusion systems, coupled with an analysis of entropy generation using the principles of nonequilibrium thermodynamics. By linking optimization methods to the well-founded theoretical framework, this research seeks to enhance the credibility and applicability of the derived results. The optimization process employed in this study utilizes adjoint variable methods to effectively optimize the topology of the porosity distribution in reaction-diffusion systems. The primary objective of this optimization problem is to maximize the reaction within the designated domain. To gain comprehensive insights, the effects of various factors, such as the geometry of the design domain and reaction and transport parameters, on the topologically optimized porosity distribution were meticulously examined. Furthermore, the outcomes of the topology optimization process were meticulously evaluated using a derived formula for the local entropy generation in reaction-diffusion systems. This evaluation adds an important dimension to the study, as it allows for a more profound understanding of the thermodynamic implications associated with the optimized porosity distribution. Ultimately, the results obtained from this study lay a solid foundation for potential advancements in the performance of electrochemical devices. By fine-tuning the spatial distribution of porosity in porous media, this research opens up new avenues for enhancing the efficiency and effectiveness of these devices, leading to potential breakthroughs in various industrial and technological applications.
คำสำคัญ
ไม่พบข้อมูลที่เกี่ยวข้อง
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
ผลงานตีพิมพ์
ไม่พบข้อมูลที่เกี่ยวข้อง






