Privacy-Aware Human Activity Classification using a Transformer-based Model
Conference proceedings article
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Khirakorn Thipprachak, Poj Tangamchit, Sarawut Lerspalungsanti
ปีที่เผยแพร่ (ค.ศ.): 2022
URL: https://ieeexplore.ieee.org/document/10022115
ภาษา: English-United States (EN-US)
บทคัดย่อ
Fall detection in a bathroom requires privacy as an important issue. Ultra-wideband sensors have the ability to protect human privacy because their output has only limited information. As a result, interpreting the output is a challenging task. This research implemented a transformer model that learned time-series signals from an ultra-wideband sensor in a bathroom. First, the signals were preprocessed into the two-dimensional range-time format. Second, the range-time data were passed into a convolutional neural network encoder before going into a transformer. Basic movements of humans were used for training. The encoder and the transformer were trained separately. The model achieved a good accuracy on static postures but not good on transitions due to their overlapped similarity with the static postures.
คำสำคัญ
ไม่พบข้อมูลที่เกี่ยวข้อง