Zinc and Strontium-Substituted Bioactive Glass Nanoparticle/Alginate Composites Scaffold for Bone Regeneration
Journal article
Authors/Editors
Strategic Research Themes
Publication Details
Author list: Parichart Naruphontjirakul, Piyaphong Panpisut and Somying Patntirapong
Publisher: MDPI
Publication year: 2023
Journal: International Journal of Molecular Sciences (1661-6596)
Volume number: 24
Issue number: 7
Start page: 6150
ISSN: 1661-6596
eISSN: 1422-0067
URL: https://www.mdpi.com/1422-0067/24/7/6150
Abstract
The global population is growing older and entering an aging society. Aging results in severe tissue disorder and organ dysfunction. Bone-related injuries are particularly significant. The need for alternative bone replacement materials for human implants has grown over the past few decades. Alginate has the potential for use as a cell scaffold for bone tissue engineering due to its high bio-compatibility. To improve the bioactivity of alginate scaffolds, zinc- and strontium-containing sol-gel-derived bioactive glass nanoparticles (Zn-Sr-BGNPs) with sizes ranging from 100 to l40 nm were incorporated. Zn-Sr-BGNPs synthesized through the sol-gel process have a high sur-face-to-volume ratio, homogeneity, and purity, resulting in faster degradation. The therapeutic bivalent ions released from Zn-Sr-BGNPs strengthen the cell scaffold and improve the stimulation of the production and development of bone cells. Zn-Sr-BGNPs with different Zn to Si nominal ratios of 0, 1, and 1.5 were mixed with alginate in this research. The ratio of Zn in Zn-Sr-BGNPs and the ratio of Zn-Sr-BGNPs in scaffolds impact the pore size, swelling, and biological properties of synthesized composite scaffolds. The surface area and pore volume of a 1:1 1Zn-Sr-BGNP:Alg composite scaffold were 22.58 m2/g and 0.055 cm3/g, respectively. The incorporation of Zn-Sr-BGNPs improved the mechanical performance of the scaffolds up to 4.73 ± 0.48 MPa. The swelling rate decreased slightly from 2.12 (pure Alg) to 1.50 (1Zn-Sr-BGNP:Alg (1:1)). The 1Zn-Sr-BGNP:Alg (1:1) composite scaffold promoted bioactivity through apatite layer formation, increased bone cell proliferation via the dissolution products released from the scaffold, enhanced calcium deposition, and facilitated cell attachment. Thus, 1Zn-Sr-BGNP:Alg (1:1) composite scaffold is proposed as a possible artificial bone scaffold in bone tissue regeneration.
Keywords
No matching items found.