An Application of Deep Learning in Direct Photon Identification with ALICE's Forward Calorimeter (FoCal)

Conference proceedings article


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งBoonying, Watcharit; Nirunpong, Kachanon; Phunchongharn, Phond;

ปีที่เผยแพร่ (ค.ศ.)2022

หน้าแรก179

หน้าสุดท้าย183

จำนวนหน้า5

ISBN9781665482080

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85149398500&doi=10.1109%2fECICE55674.2022.10042895&partnerID=40&md5=ff5a035610fcb22f29dfd91f03847837

ภาษาEnglish-Great Britain (EN-GB)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

The forward electromagnetic and hadronic calorimeter (FoCal) at the ALICE experiment is specifically being developed to measure direct photons in the forward direction, which will enhance the study of the partonic structure of protons and nuclei in the regime of small Bjorken-x. As hadron decays, especially those of neutral pions and eta mesons, can also produce high energy photons which behave as a background to direct photons, the discrimination of direct photons from this background is crucial. To enhance direct photon identification with FOCAL, machine learning is applied. In this contribution, the method of Deep Neural Networks (DNNs) is employed. Not only does DNNs learn the pattern of direct photons and differentiate them from background, it also identifies the input features which are impactful to the particle identification method. The performance of the proposed method is validated using efficiency, purity, confusion matrix, f1-score, and Area Under Curve (AUC). Additionally, it is also compared with the traditional cut-based algorithm © 2022 IEEE.


คำสำคัญ

Deep Neural Networks (DNNs)Direct photonsForward electromagnetic and hadronic calorimeter (FoCal)Particle identification


อัพเดทล่าสุด 2023-27-10 ถึง 23:06