Improvements in rainfall estimation over Bangkok, Thailand by merging satellite, radar, and gauge rainfall datasets with the geostatistical method
บทความในวารสาร
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Parichat Wetchayont, Chaiwat Ekkawatpanit, Sunsern Rueangrit & Jittawat Manduang
ผู้เผยแพร่: Taylor and Francis Group
ปีที่เผยแพร่ (ค.ศ.): 2023
ชื่อย่อของวารสาร: Big Earth Data
Volume number: 7
Issue number: 2
หน้าแรก: 251
หน้าสุดท้าย: 275
จำนวนหน้า: 25
นอก: 2096-4471
eISSN: 2574-5417
URL: https://www.tandfonline.com/doi/full/10.1080/20964471.2023.2171581
ภาษา: English-United States (EN-US)
บทคัดย่อ
Bangkok is located in a low land area, and floods frequently occur from rainfall, river discharge, and tides. High-accuracy rainfall data are needed to achieve high-accuracy flood predictions from hydrological models. The main objective of this study is to establish a method that improves the accuracy of precipitation estimates by merging rainfall from three sources: an infrared channel from the Himawari-8 satellite, rain gauges, and ground-based radar observations. This study applied cloud classification and bias correction using rain gauges to discriminate these errors. The bias factors were interpolated using the ordinary kriging (OK) method to fill in the areas of estimated rainfall where no rain gauge was available. The results show that bias correction improved the accuracy of radar and Himawari-8 rainfall estimates before their combination. The merged algorithm was then adopted to produce hourly merged rainfall products (GSR). Compared to the initial estimated product, the GSR is significantly more accurate. The merging algorithm increases the spatial resolution and quality of rainfall estimates and is simple to use. Furthermore, these findings not only reveal the potential and limitations of the merged algorithm but also provide useful information for future retrieval algorithm enhancement
คำสำคัญ
Bangkok