Analytical Solution and Buckling of Hemi-Ellipsoidal Shell Structures of Revolution
under Uniformly Distributed Load
บทความในวารสาร
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Kasan Chanto, Tawich Pulngern, Chanachai Tangbanjongkij, Weeraphan Jiammeepreecha, and Somchai Chucheepsakul
ผู้เผยแพร่: World Scientific Publishing
ปีที่เผยแพร่ (ค.ศ.): 2023
ชื่อย่อของวารสาร: IJSSD
นอก: 0219-4554
eISSN: 1793-6764
URL: https://www.worldscientific.com/doi/10.1142/S0219455424500263
บทคัดย่อ
This paper focuses on the analytical procedure for determining novel exact
expressions for internal forces and displacements of hemi-ellipsoidal shells formed as
an axisymmetric shell of revolution under uniformly distributed load such as imposed
loads. The simplest form of expressions for solutions are derived based on the linear
membrane theory under symmetrical loading that is formed as a shell of revolution.
The results have been validated and have a good consistency with numerical solutions
from the finite-element method (FEM) which are derived based on the principle of
virtual work and differential geometry. The obtained analytical exact solution is only
valid for small displacements or if the response does not exceed the linearity limit. In
cases of large displacements, geometrical nonlinear finite-element analysis is
recommended to determine the solution. The linearity limit determination is
demonstrated, and the effects of shells’ geometry, thickness, and magnitude of applied
loads are presented. Additionally, the linear buckling analysis has been performed. The
study found that the size ratio and support condition have a significant effect on the
critical load of the first mode, and the hemispherical shells have the highest buckling
resistance due to the geometry.
คำสำคัญ
ไม่พบข้อมูลที่เกี่ยวข้อง