A sensitive and facile electrochemical paper-based sensor for glucose detection in whole blood using the Pd/CB-Ni@rGO modified electrode.

Journal article


Authors/Editors


Strategic Research Themes


Publication Details

Author listChim Math, Kamolwich Income, Kawin Khachornsakkul, Paweenar Duenchay and Wijitar Dungchai

PublisherRoyal Society of Chemistry

Publication year2023

JournalAnalyst (0003-2654)

Volume number148

Issue number19

Start page4753

End page4761

Number of pages9

ISSN0003-2654

eISSN1364-5528

URLhttps://pubs.rsc.org/en/content/articlelanding/2023/an/d3an00879g


View on publisher site


Abstract

We created novel Pd/CB-Ni@rGO nanomaterials for glucose detection. The as-synthesized nanomaterials were dropped on the electrode surface using the drop casting technique. The prepared electrode was then attached to a paper-based device containing the sample zone and the reaction zone, enabling plasma isolation and an enzymatic reaction for glucose detection in whole blood. The nanomaterials and surfaces of electrodes were characterized by FTIR, TEM, and SEM. The proposed approach is a disposable glucose detection method that is unaffected by protein fouling on the electrode, and it requires only one drop of human blood. Therefore, there is no need for extensive sample preparation, and there is less sample consumption. Under optimal conditions, Pd/CB-Ni@rGO can accurately measure blood glucose levels with a linear range of 7 to 7140 μM (R2 = 0.9986) and a low detection limit of 0.82 µM. Besides, the developed sensor shows excellent anti-interference capacity, stability, and satisfactory reproducibility and repeatability. Importantly, Pd/CB-Ni@rGO was successfully applied for glucose in whole blood from 4 volunteers, with results that correlated well with those obtained using an Accucheck glucometer at a 95% confidence level. Given its low cost, high accuracy, and ease of use, the blood glucose sensor holds significant potential for clinical use and broadens the area of future noninvasive sensor development.


Keywords

No matching items found.


Last updated on 2024-26-01 at 23:05