Preparation of Chitin Nanofibers and Natural Rubber Composites and Their Triboelectric Nanogenerator Applications

Journal article


Authors/Editors


Strategic Research Themes


Publication Details

Author listKattaliya Petchnui, Teerayut Uwanno, Mayuree Phonyiem Reilly, Chinathun Pinming, Alongkot Treetong, Visittapong Yordsri, Nutthanun Moolsradoo, Annop Klamcheun and Winadda Wongwiriyapan

PublisherMDPI

Publication year2024

Journal acronymMaterials

Volume number17

Issue number3

Start page738

ISSN1996-1944

eISSN1996-1944

URLhttps://www.mdpi.com/1996-1944/17/3/738

LanguagesEnglish-United States (EN-US)


View on publisher site


Abstract

Triboelectric nanogenerators (TENGs) have gained significant attention as promising energy-harvesting devices that convert mechanical energy into electrical energy through charge separation induced by friction and electrostatic induction. In this study, we explore the utilization of biowaste shrimp shell-extracted chitin nanofiber (ChNF) as a viable eco-friendly material for TENG applications. Composite materials were prepared by incorporating ChNF into natural rubber (NRL) at loading levels of 0.1 and 0.2 wt% (NRL/ChNF) to form the TENG triboelectric layer. ChNFs with a uniform width of approximately 10–20 nm were successfully extracted from the shrimp shells through a simple mechanical procedure. The NRL/ChNF composites exhibited enhanced mechanical properties, as evidenced by a higher Young’s modulus (3.4 GPa) compared to pure NRL. Additionally, the NRL/ChNF composites demonstrated an increased dielectric constant of 3.3 at 0.1 MHz. Moreover, the surface potential difference of NRL increased from 0.182 V to 1.987 V in the NRL/ChNF composite. When employed as the triboelectric layer in TENG, the NRL/ChNF composites exhibited significant improvement in their output voltage, with it reaching 106.04 ± 2.3 V. This enhancement can be attributed to the increased dielectric constant of NRL/ChNF, leading to enhanced charge exchange and charge density. This study presents a straightforward and environmentally friendly technique for preparing sustainable natural materials suitable for energy-harvesting devices.


Keywords

No matching items found.


Last updated on 2024-08-02 at 23:05