Cluster-based photography and modeling integrated method for an efficient measurement of cassava leaf area

บทความในวารสาร


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งJittrawan Thaiprasit, Porntip Chiewchankaset, Saowalak Kalapanulak, Treenut Saithong

ผู้เผยแพร่PLOS

ปีที่เผยแพร่ (ค.ศ.)2023

Volume number18

Issue number10

หน้าแรกe0287293

นอก19326203

URLhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0287293

ภาษาEnglish-United States (EN-US)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

Leaf area (LA) and biomass are important agronomic indicators of the growth and health of plants. Conventional methods for measuring the LA can be challenging, time-consuming, costly, and laborious, especially for a large-scale study. A hybrid approach of cluster-based photography and modeling was, thus, developed herein to improve practicality. To this end, data on cassava palmate leaves were collected under various conditions to cover a spectrum of viable leaf shapes and sizes. A total of 1,899 leaves from 3 cassava genotypes and 5 cultivation conditions were first assigned into clusters by size, based on their length (L) and width (W). Next, 111 representative leaves from all clusters were photographed, and data from image-processing were subsequently used for model development. The model based on the product of L and W outperformed the rest (R2 = 0.9566, RMSE = 20.00). The hybrid model was successfully used to estimate the LA of greenhouse-grown cassava as validation. This represents a breakthrough in the


คำสำคัญ

CassavaCluster-based methodEstimation modelGeneral Linear ModelHybrid methodleaf arealeaf area meterPrediction model


อัพเดทล่าสุด 2024-13-02 ถึง 23:05