Analytical and numerical studies on dynamic of complexiton solution for complex nonlinear dispersive model
บทความในวารสาร
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Sivaporn Phumichot, Waritsara Kuntiya, Kanyuta Poochinapan, Pariwate Varnakovida, Chalump Oonariya, Ben Wongsaijai
ผู้เผยแพร่: Wiley
ปีที่เผยแพร่ (ค.ศ.): 2024
Volume number: 47
Issue number: 1
หน้าแรก: 81
หน้าสุดท้าย: 109
จำนวนหน้า: 29
นอก: 0170-4214
eISSN: 1099-1476
ภาษา: English-Great Britain (EN-GB)
บทคัดย่อ
In this paper, we apply the basic one-way propagator in order to introduce complex regularized long wave (RLW) equation. The complex RLW can be transformed into a system of nonlinear equations. By adopting a consequence nonlinear system, we can derive an energy conservation law of a complex regularized long wave equation. We then investigate how the Ansatz method may be applied to find a class of solitary wave solutions. Simultaneously, a numerical scheme for solving the model is implemented using a finite difference method based on the energy-preserving Crank–Nicolson/Adams–Bashforth technique. It is worth mentioning that the obtained system is nonlinear. However, by using the present algorithm, we are able to linearize this system and solve it because of the implicit nature of the system of equations. An a priori estimate of the numerical solutions is derived to obtain a convergence and stability analysis; this yields second-order accuracy in both time and space. Additionally, some numerical experiments verify computational efficiency. The results indicate that this method is an excellent way to preserve energy conservation, providing second-order accuracy both in time and space with a maximum norm. In addition, we use the proposed scheme to study the effects of dispersive parameters when proceeding with an initial complex Gaussian condition. © 2023 John Wiley & Sons Ltd.
คำสำคัญ
Ansatz method, complex KdV equation, complex RLW equation