Structured adaptive spectral-based algorithms for nonlinear least squares problems with robotic arm modelling applications

บทความในวารสาร


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งYahaya, Mahmoud Muhammad; Kumam, Poom; Chaipunya, Parin; Seangwattana, Thidaporn;

ผู้เผยแพร่Springer

ปีที่เผยแพร่ (ค.ศ.)2023

ชื่อย่อของวารสารSpringer Nature

Volume number42

Issue number7

นอก0101-8205

eISSN1807-0302

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85173571892&doi=10.1007%2fs40314-023-02452-1&partnerID=40&md5=40a1c219f219a4a004778d23592b39a7

ภาษาEnglish-Great Britain (EN-GB)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

This research article develops two adaptive, efficient, structured non-linear least-squares algorithms, NLS. The approach taken to formulate these algorithms is motivated by the classical Barzilai and Borwein (BB) (IMA J Numer Anal 8(1):141–148, 1988) parameters. The structured vector approximation, which is an action of a vector on a matrix, is derived from higher order Taylor series approximations of the Hessian of the objective function, such that a quasi-Newton condition is satisfied. This structured approximation is incorporated into the BB parameters’ weighted adaptive combination. We show that the algorithm is globally convergent under some standard assumptions. Moreover, the algorithms’ robustness and effectiveness were tested numerically by solving some benchmark test problems. Finally, we apply one of the algorithms to solve a robotic motion control model with three degrees of freedom, 3DOF. © 2023, The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional.


คำสำคัญ

Non-monotone line search


อัพเดทล่าสุด 2024-19-03 ถึง 11:05