A newly constructed numerical approximation and analysis of Generalized fractional Burger-Huxley equation using higher order method

บทความในวารสาร


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งAkram T.; Iqbal A.; Kumam P.; Sutthibutpong T.

ผู้เผยแพร่Elsevier

ปีที่เผยแพร่ (ค.ศ.)2023

Volume number54

นอก22113797

eISSN2211-3797

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85175293656&doi=10.1016%2fj.rinp.2023.107119&partnerID=40&md5=6c3158b94b906af8d0318b9577288ec3

ภาษาEnglish-Great Britain (EN-GB)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

In this manuscript, the collocation approach using the higher order extended cubic B-spline (ECBS) as the basis function is efficiently used to numerically solve the generalized time fractional Burger-Huxley equation (TFBHE). The Burger-Huxley equation is a widely studied nonlinear partial differential equation that models the propagation of nerve impulses in excitable systems such as the neurons in the brain. The time fractional versions of the Burger-Huxley equation (BHE), which incorporate fractional derivatives in time direction to model the anomalous diffusion, reaction mechanism, and memory effects observed in many physical and biological systems. The θ−weighted technique and the Atangana–Baleanu operator are employed to discretize the equation. The higher order EBCS method is used in space direction. The stability and convergence analysis are also presented. Numerous examples are carried out to show the validity of the technique. The graphical representations and computed results are observed the good agreement with the literature. © 2023 The Authors


คำสำคัญ

B-spline basisTime fractional reaction–diffusion model


อัพเดทล่าสุด 2025-14-08 ถึง 12:00