Towards Face De-identification for Wearable Cameras
Conference proceedings article
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Puangthamawathanakun, Bunyarit; Arpnikanondt, Chonlameth; Krathu, Worarat; Healy, Graham; Gurrin, Cathal;
ผู้เผยแพร่: Association for Computing Machinery
ปีที่เผยแพร่ (ค.ศ.): 2023
หน้าแรก: 210
หน้าสุดท้าย: 216
จำนวนหน้า: 7
ISBN: 979-840070912-8
ภาษา: English-Great Britain (EN-GB)
บทคัดย่อ
Wearable cameras provide valuable new sources of data for health and wellness monitoring, however, such visual data brings privacy concerns. This paper proposes a prototype egocentric face de-identification system for wearable camera images by swapping the original faces with synthetic faces. The motivation of this paper is to: (1) de-identify faces in egocentric images and (2) preserve the existence of each identity in images where the source identity is altered. The system incorporates our proposed method, which promises a privacy-aware and cost-effective approach. We evaluated the system on the Ego4D audio-visual PoV diarization training set by analysing six activities where faces are visible in wearable camera data. The results show promising de-identification on the source faces while most existences remain. ฉ 2023 Owner/Author.
คำสำคัญ
Face De-identification, Lifelog, Privacy