Partitioning Graph Clustering With User-Specified Density

บทความในวารสาร


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งROHI TARIQ, KITTICHAI LAVANGNANANDA,PASCAL BOUVRY, AND PORNCHAI MONGKOLNAM

ผู้เผยแพร่Institute of Electrical and Electronics Engineers

ปีที่เผยแพร่ (ค.ศ.)2023

Volume number11

หน้าแรก122273

หน้าสุดท้าย122294

จำนวนหน้า22

นอก2169-3536

eISSN2169-3536

URLhttps://ieeexplore.ieee.org/document/10304131/

ภาษาEnglish-United States (EN-US)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

Graph clustering has attracted many interests in recent years, with numerous applications ranging from the clustering of computer networks to the detection of social communities. It presents a challenging NP-class problem, and as a result, numerous algorithms have been developed, each tailored to specific objectives and quality metrics for evaluation. This research commences by categorizing existing graph clustering algorithms based on two distinct perspectives: parameter-free algorithms and user-defined or adjustable parametric algorithms. Quality metrics are further categorized into three distinct groups: internal connectivity, external connectivity, and a combination of both. If a task can be represented by a simple undirected and unweighted graph, from a management and deployment of resources perspective, having clusters of some kind of similar density is advantageous as it allows efficient management. This research introduces a partitioning graph clustering algorithm that allows users to specify the desired density of a cluster by means of 'relative density'. Clustering process involves the determination of all triangles (i.e., smallest cliques) and selecting a clique as an initial cluster. The expansion of a cluster is done by adding adjacent cliques while the required relative density is monitored. Existing metrics are found unsuitable for evaluating the proposed method; therefore, a suitable new metric, the Mean Relative Density Deviation Coefficient (MRDDC), is introduced. © 2013 IEEE.


คำสำคัญ

Graph Clusteringmean relative density deviation coefficient (MDRCC)NP problempartitioning graph clusteringquality metricrelative density


อัพเดทล่าสุด 2024-19-02 ถึง 23:05