Optimizing Anomaly Detection in Large-scale Logs

Conference proceedings article


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งArnatchai Techaviseschai, Vasco Chibante Barroso, Sansiri Tarnpradab, Phond Phunchongharn

ปีที่เผยแพร่ (ค.ศ.)2023

หน้าแรก18

หน้าสุดท้าย23

จำนวนหน้า6

URLhttps://ieeexplore.ieee.org/document/10392401/


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

The ALICE detector at the CERN LHC is a large and complex system that has employed system logging to keep track of progress and detect any abnormal activity that may occur. In this study, we propose a complete log-anomaly detection framework to automatically detect anomalies, with an emphasis on examining its scalability when applied to large datasets as those typical of large high-energy physics experiments. Furthermore, we investigate different factors that may have an impact on model performance through extensive tests on real-world datasets, HDFS, and CERN Infologger. The insights gained from this study will enhance the safety, efficiency, and reliability of infrastructure operations at the ALICE facility.


คำสำคัญ

ALICEAnomaly DetectionCERNConvolutional neural networkMachine LearningMonitoring System


อัพเดทล่าสุด 2024-14-03 ถึง 23:06