Robust individual pig tracking

Journal article


Authors/Editors


Strategic Research Themes


Publication Details

Author listJaoukaew, Aggaluck; Suwansantisuk, Watcharapan; Kumhom, Pinit

PublisherInstitute of Advanced Engineering and Science

Publication year2024

Journal acronymIJECE

Volume number14

Issue number1

Start page279

End page293

Number of pages15

ISSN2088-8708

eISSN2722-2578

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85183930845&doi=10.11591%2fijece.v14i1.pp279-293&partnerID=40&md5=686c6d0d18195d07718b43d0c8ccc817

LanguagesEnglish-Great Britain (EN-GB)


View on publisher site


Abstract

The locations of pigs in the group housing enable activity monitoring and improve animal welfare. Vision-based methods for tracking individual pigs are noninvasive but have low tracking accuracy owing to long-term pig occlusion. In this study, we developed a vision-based method that accurately tracked individual pigs in group housing. We prepared and labeled datasets taken from an actual pig farm, trained a faster region-based convolutional neural network to recognize pigs’ bodies and heads, and tracked individual pigs across video frames. To quantify the tracking performance, we compared the proposed method with the global optimization (GO) method with the cost function and the simple online and real-time tracking (SORT) method on four additional test datasets that we prepared, labeled, and made publicly available. The predictive model detects pigs’ bodies accurately, with F1-scores of 0.75 to 1.00, on the four test datasets. The proposed method achieves the largest multi-object tracking accuracy (MOTA) values at 0.75, 0.98, and 1.00 for three test datasets. In the remaining dataset, the proposed method has the second-highest MOTA of 0.73. The proposed tracking method is robust to long-term occlusion, outperforms the competitive baselines in most datasets, and has practical utility in helping to track individual pigs accurately.


Keywords

Multi-object tracking Performance evaluation Pig detection Pig localization Pig tracking


Last updated on 2024-26-07 at 00:00