Investigating pharmacokinetic profiles of Centella asiatica using machine learning and PBPK modelling
บทความในวารสาร
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Siriwan Pumkathin, Yuranan Hanlumyuang, Worawat Wattanathana, Teeraphan Laomettachit, Monrudee Liangruksa
ผู้เผยแพร่: Taylor and Francis Group
ปีที่เผยแพร่ (ค.ศ.): 2024
ชื่อย่อของวารสาร: J Biopharm Stat
Volume number: June
หน้าแรก: 1
หน้าสุดท้าย: 16
จำนวนหน้า: 16
นอก: 1054-3406
eISSN: 1520-5711
บทคัดย่อ
Physiologically based pharmacokinetic (PBPK) modeling serves as a valuable tool for determining the distribution and disposition of substances in the body of an organism. It involves a mathematical representation of the interrelationships among crucial physiological, biochemical, and physicochemical parameters. A lack of the values of pharmacokinetic parameters can be challenging in constructing a PBPK model. Herein, we propose an artificial intelligence framework to evaluate a key pharmacokinetic parameter, the intestinal effective permeability (Peff). The publicly available Peff dataset was utilized to develop regression machine learning models. The XGBoost model demonstrates the best test accuracy of R-squared (R2, coefficient of determination) of 0.68. The model is then applied to compute the Peff of asiaticoside and madecassoside, the parent compounds found in Centella asiatica. Subsequently, PBPK modeling was conducted to evaluate the biodistribution of the herbal substances following oral administration in a rat model. The simulation results were evaluated and validated, which agreed with the existing in vivo studies in rats. This in silico pipeline presents a potential approach for investigating the pharmacokinetic parameters and profiles of drugs or herbal substances, which can be used independently or integrated into other modeling systems.
คำสำคัญ
ไม่พบข้อมูลที่เกี่ยวข้อง