Comparing machine learning models for mixed data: Forecasting Arabica coffee yields n in the northern region of Thailand

Poster


Authors/Editors


Strategic Research Themes


Publication Details

Author listฐิติวัฒน์ เขียวฉะอุ่ม, ณิชากร กมลสิทธิสถิต, อภิชญา ศรีไพศาล, พรทิพย์ เดชพิชัย

Publication year2024

Start page83

End page84

Number of pages2


Abstract

This research aims: 1) to study the relationship between weather conditions and soil quality with Arabica coffee yield, and 2) to develop a prediction model for Arabica coffee production using decision tree, random forest, and deep learning neural networks with short and long-term memory units. The panel data, collecting from 10 provinces in the Northern region, including Chiang Rai, Lampang, Chiang Mai, Mae Hong Son, Nan, Tak, Phrae, Phayao, Uttaradit, and Phitsanulok, with 9 years from 2013-2021 each was used. The data includes annual Arabica coffee yield, monthly weather data, and soil quality data in 2018. The data was
divided into two sets: 70% for training to construct models and 30% for testing the models.

The findings reveal that the deep learning neural network model with long short-term memory units outperforms than decision tree and random forest with R2, RMSE, and r values of 0.91, 9.83, and 0.96, respectively. The most affecting factors on Arabica coffee yield are moisture during the fruit development period, with optimal conditions being a humidity level above 60%. Secondly, rainfall between 1200-1500 millimeters per year during the fruit development stage, and lastly a temperature ranging of 18-28 degrees Celsius during pruning. They are crucial factor on Arabica coffee yield.


Keywords

การพยากรณ์การเรียนรู้ของเครื่อง (machine learning)ความสัมพันธ์, การเปลี่ยนแปลงสภาพอากาศ, การคาดการณ์เชิงตัวเลข, การบริหารจัดการทางด้านการเกษตรกาแฟ, กาแฟอาราบิก้า (Coffea arabica), กาแฟโรบัสต้า (Coffea canephore), ผลผลิตกาแฟ (yield), คุณภาพกาแฟ


Last updated on 2024-27-08 at 00:00