Speed Up! Cost-Effective Large Language Model for ADAS Via Knowledge Distillation

Conference proceedings article


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งTaveekitworachai P., Suntichaikul P., Nukoolkit C., Thawonmas R.

ปีที่เผยแพร่ (ค.ศ.)2024

วารสารIEEE Intelligent Vehicles Symposium, Proceedings (1931-0587)

หน้าแรก1933

หน้าสุดท้าย1938

จำนวนหน้า6

ISBN9798350348811

นอก1931-0587

URLhttps://api.elsevier.com/content/abstract/scopus_id/85199774903

ภาษาEnglish-United States (EN-US)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

This paper presents a cost-effective approach to utilizing large language models (LLMs) as part of advanced driver-assistance systems (ADAS) through a knowledge-distilled model for driving assessment. LLMs have recently been employed across various domains. However, due to their size, they require sufficient computing infrastructure for deployment and ample time for generation. These characteristics make LLMs challenging to integrate into applications requiring realtime feedback, including ADAS. An existing study employed a vector database containing responses generated from an LLM to act as a surrogate model. However, this approach is limited when handling out-of-distribution (OOD) scenarios, which LLMs excel at. We propose a novel approach that utilizes a distilled model obtained from an established knowledge distillation technique to perform as a surrogate model for a target LLM, offering high resilience in handling OOD situations with substantially faster inference time. To assess the performance of the proposed approach, we also introduce a new dataset for driving scenarios and situations (DriveSSD), containing 124,248 records. Additionally, we augment randomly selected 12,425 records, 10% of our DriveSSD, with text embeddings generated from an embedding model. We distill the model using 10,000 augmented records and test all approaches on the remaining 2,425 records. We find that the distilled model introduced in this study has better performance across metrics, with half of the inference time used by the previous approach. We make our source code and data publicly available.


คำสำคัญ

driving assessmentknowledge distillationLLMs-integrated system


อัพเดทล่าสุด 2024-26-09 ถึง 00:00