Facile Combination of Bismuth Vanadate with Nickel Tellurium Oxide for Efficient Photoelectrochemical Catalysis of Water Oxidation Reactions
บทความในวารสาร
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Chiu Y.-H.; Chung R.-J.; Kongvarhodom C.; Saukani M.; Yougbaré S.; Chen H.-M.; Wu Y.-F.; Lin L.-Y.
ผู้เผยแพร่: American Chemical Society
ปีที่เผยแพร่ (ค.ศ.): 2024
Volume number: 16
Issue number: 37
หน้าแรก: 49249
หน้าสุดท้าย: 49261
จำนวนหน้า: 13
นอก: 1944-8244
eISSN: 1944-8252
ภาษา: English-Great Britain (EN-GB)
บทคัดย่อ
Bismuth vanadate (BVO) having suitable band edges is one of the effective photocatalysts for water oxidation, which is the rate-determining step in the water splitting process. Incorporating cocatalysts can reduce activation energy, create hole sinks, and improve photocatalytic ability of BVO. In this work, the visible light active nickel tellurium oxide (NTO) is used as the cocatalyst on the BVO photoanode to improve photocatalytic properties. Different NTO amounts are deposited on the BVO to balance optical and electrical contributions. Higher visible light absorbance and effective charge cascades are developed in the NTO and BVO composite (NTO/BVO). The highest photocurrent density of 6.05 mA/cm2 at 1.23 V versus reversible hydrogen electrode (VRHE) and the largest applied bias photon-to-current efficiency (ABPE) of 2.13% are achieved for NTO/BVO, while BVO shows a photocurrent density of 4.19 mA/cm2 at 1.23 VRHE and ABPE of 1.54%. Excellent long-term stability under light illumination is obtained for NTO/BVO with photocurrent retention of 91.31% after 10,000 s. The photoelectrochemical catalytic mechanism of NTO/BVO is also proposed based on measured band structures and possible interactions between NTO and BVO. This work has depicted a novel cocatalytic BVO system with a new photocharging material and successfully achieves high photocurrent densities for catalyzing water oxidation. © 2024 The Authors. Published by American Chemical Society.
คำสำคัญ
cocatalyst, light absorbance, surface engineering