On diagonally structured scheme for nonlinear least squares and data-fitting problems

บทความในวารสาร


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งYahaya M.M.; Kumam P.; Chaipunya P.; Awwal A.M.; Wang L.

ผู้เผยแพร่EDP Sciences

ปีที่เผยแพร่ (ค.ศ.)2024

Volume number58

Issue number4

หน้าแรก2887

หน้าสุดท้าย2905

จำนวนหน้า19

นอก0399-0559

eISSN1290-3868

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85200355822&doi=10.1051%2fro%2f2024102&partnerID=40&md5=d3c82e3ec9f549579982efc667660f2d

ภาษาEnglish-Great Britain (EN-GB)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

Recently, structured nonlinear least-squares (NLS) based algorithms gained considerable emphasis from researchers; this attention may result from increasingly applicable areas of these algorithms in different science and engineering domains. In this article, we coined a new efficient structured-based NLS algorithm. We developed a diagonal Hessian-based formulation for solving NLS problems. We derived the quasi-Newton update based on a diagonal matrix scheme subject to a modified structured secant condition. Also, we show that the algorithm's search direction satisfies a sufficient descent condition under some standard assumptions. Subsequently, we also prove the global convergence of the algorithm and then eventually show its linear convergence rate for strongly convex functions. Furthermore, to show case the proposed algorithm's performance, we experimented numerically by comparing it with other approaches on some benchmark test functions available in the literature. Finally, the introduced scheme is applied to solve some data-fitting problems © The authors. Published by EDP Sciences, ROADEF, SMAI 2024.


คำสำคัญ

Convergence rateData fittingDiagonal updateSecant condition


อัพเดทล่าสุด 2025-06-06 ถึง 12:00