Remarks on the light ring images and the optical appearance of hairy black holes in Einstein–Maxwell-dilaton gravity

บทความในวารสาร


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งPromsiri C., Horinouchi W., Hirunsirisawat E.

ผู้เผยแพร่SpringerOpen

ปีที่เผยแพร่ (ค.ศ.)2024

ชื่อย่อของวารสารEPJC

Volume number84

Issue number9

นอก1434-6044

eISSN1434-6052

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85203343540&doi=10.1140%2fepjc%2fs10052-024-13258-8&partnerID=40&md5=5bbc2b4f64c4c5ab0a9f897aff4b2274

ภาษาEnglish-Great Britain (EN-GB)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

The behaviors of null geodesics in the spherical symmetric black holes in Einstein–Maxwell-dilaton (EMD) theory with coupling function f(Φ)=e-2αΦ are meticulously analyzed. We investigate the effects of coupling constant α on the effective potential of photon trajectories within three ranges, namely 0<α<1, α=1 and α>1. We find that the thicknesses of lensing and photon rings are smaller at larger α and fixed electric charge in the unit of mass q, whereas they are larger at fixed α and larger q. This behavior can be described by using the angular Lyapunov exponent γ in the vicinity of the critical curve. Remarkably, the behaviors of photon trajectories are found to be more interesting when α>1. Namely, the radius of the black hole shadow Rs becomes to be smaller than the photon sphere radius rph when α>1 and q>q∗. Moreover, Rs goes to zero as q saturates the extremal limit, beyond which the photon orbit becomes absent. Furthermore, we construct the optical appearance of black holes surrounded by optically and geometrically thin accretion disk with three cases of Gralla–Lupsasca–Marrone (GLM) emission profile. Our results indicate that the observed flux originating from the lensing and photon rings exhibits suppression as α increases, while it undergoes amplification with the increasing parameter q. © The Author(s) 2024.


คำสำคัญ

ไม่พบข้อมูลที่เกี่ยวข้อง


อัพเดทล่าสุด 2024-16-10 ถึง 00:00