Predicting rapid impact compaction of soil using a parallel transformer and long short-term memory architecture for sequential soil profile encoding
บทความในวารสาร
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Sompote Youwai, Sirasak Detcheewa
ผู้เผยแพร่: Elsevier
ปีที่เผยแพร่ (ค.ศ.): 2025
วารสาร: Engineering Applications of Artificial Intelligence (0952-1976)
Volume number: 139
Issue number: Part B
นอก: 0952-1976
URL: https://www.sciencedirect.com/science/article/pii/S0952197624018220
ภาษา: English-United States (EN-US)
บทคัดย่อ
This study presents an advanced deep learning approach for predicting the effectiveness of Rapid Impact Compaction (RIC). The model integrates the focused attention mechanisms of transformer architectures with the sequential data processing capabilities of Long Short-Term Memory (LSTM) networks. Input parameters include the initial soil profile and feature vectors representing the soil's initial state, applied compaction effort, and compaction hammer energy. Utilizing an encoder-decoder framework, the model encodes soil profile information at various depths into tokens, which are subsequently decoded to predict the resulting ground improvement. An ablation study was conducted to assess the significance of each model component. The model's predictive accuracy was validated using field test data, demonstrating a strong correlation with observed outcomes (mean absolute error of 0.42 for test data). Shapley value analysis of the trained model revealed that compaction effort exerted the highest influence on predictions, followed by fine content and fill thickness. The model architecture also demonstrated successful application to alternative RIC case studies, indicating potential generalizability. Furthermore, the model's capability to simulate hypothetical scenarios with varying compaction efforts provides valuable insights for strategic planning and optimization of RIC project designs.
คำสำคัญ
Deep Learning, Machine Learning