A Real-time Semi-supervised Log Anomaly Detection Framework for ALICE O2 Facilities
บทความในวารสาร
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Arnatchai Techaviseschai, Sansiri Tarnpradab, Vasco Chibante Barroso, Phond Phunchongharn
ผู้เผยแพร่: MDPI
ปีที่เผยแพร่ (ค.ศ.): 2025
Volume number: 15
Issue number: 11
eISSN: 2076-3417
บทคัดย่อ
The ALICE (A Large Ion Collider Experiment) detector at the Large Hadron Collider (LHC), operated by the European Organization for Nuclear Research (CERN), is dedicated to heavy-ion collisions. Within ALICE, the application logs of the online computing systems are consolidated through a logging system known as Infologger, which integrates data from various sources. To identify potential anomalies, shifters in the control room manually review logs for anomalies which requires significant expertise and poses challenges due to the frequent onboarding of new personnel. To address this issue, we propose a real-time semi-supervised log anomaly detection framework designed to automatically detect anomalies in ALICE operations. The framework leverages BERTopic, a topic modeling technique, to provide real-time insights for incoming log messages for shifters. This includes an analytical dashboard which represents the anomaly status in log messages, facilitating informative monitoring for shifters. Through evaluation, including Infologger and BGL (BlueGene/L supercomputer), we analyze the effects of word embeddings, clustering algorithms, and HDBSCAN hyperparameters on model performance. These insights aim to enhance the efficiency and reliability of anomaly detection within ALICE’s operational infrastructure.
คำสำคัญ
ไม่พบข้อมูลที่เกี่ยวข้อง