Precision Tsunami Prognostication: A Machine Learning Expedition for Predictive Accuracy

Conference proceedings article


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งR. S. Lakshmi Balaji, T. Akkaralaertses, N. Duraimuthuarasan, M. Batumalay, C.S. Thiruvenkataswamy, G. Abirami, T. Yingthawornsuk

ปีที่เผยแพร่ (ค.ศ.)2024

URLhttps://gcmm2024.rmutk.ac.th/

ภาษาEnglish-United States (EN-US)


บทคัดย่อ

In coastal regions, the ever-present threat of tsunamis demands rigorous disaster preparedness strategies. This study represents a ground breaking advancement in tsunami forecasting accuracy, employing various machine learning models to predict tsunami characteristics and arrival times. Comprehensive data spanning historical earthquake, tsunami, and landslide records from 1800 to 2023 were meticulously collected from reputable sources. Machine learning models, including Random Forest (RF), Support Vector Machine (SVM), Linear Regression, and neural networks, were applied to predict tsunami wave speed and travel time. The study contributes to achieving Sustainable Development Goal 11 (Sustainable Cities and Communities) and SDG 13 (Climate Action) through the integration of climate change considerations in tsunami prediction and preparedness. These outcomes underscore the robustness of the models in accurately forecasting tsunami characteristics and arrival times, surpassing previous benchmarks. By harnessing the power of these advanced predictive models, we have achieved unparalleled accuracy, setting a new standard in tsunami forecasting. This advancement not only enhances our understanding of tsunami dynamics but also empowers disaster management authorities and coastal communities with actionable insights for targeted preparedness and mitigation strategies. Through global collaboration and the application of cutting-edge predictive models, this research aims to safeguard vulnerable coastal regions, offering indispensable contributions to disaster risk reduction and coastal resilience as a process innovation.


คำสำคัญ

ไม่พบข้อมูลที่เกี่ยวข้อง


อัพเดทล่าสุด 2025-06-03 ถึง 00:00