Aeration Optimization for the Biodrying of Market Waste Using Negative Ventilation: A Lysimeter Study

Journal article


Authors/Editors


Strategic Research Themes


Publication Details

Author listLwin Y.N.N., Bhatsada A., Towprayoon S.,Patumsawad S., Sutthasil N., Wangyao K.

PublisherMDPI

Publication year2024

Volume number6

Issue number4

Start page1519

End page1536

Number of pages18

ISSN2571-8797

eISSN2571-8797

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85213437993&doi=10.3390%2fcleantechnol6040073&partnerID=40&md5=b4b1c3e3dbf2af9a50bd27c5d2ca0fe1

LanguagesEnglish-Great Britain (EN-GB)


View on publisher site


Abstract

This study investigates the optimization of aeration rates for the biodrying of market waste using negative-pressure ventilation. Market waste, characterized by a high moisture content (MC) and rapid decomposition, presents challenges in waste management. Over 12 days, three aeration rates (ARs) of 0.2, 0.4, and 0.6 m3/kg/day were examined, and the most effective continuous ventilation configuration was identified in terms of heat generation, moisture reduction, and biodrying efficiency. The results indicate that the most effective AR for heat retention and moisture removal was 0.2 m3/kg/day, achieving a 6.63% MC reduction and a 9.12% low heating value (LHV) increase. Gas analysis showed that, while AR 0.2 supported high microbial activity during the initial 7 days, AR 0.6 sustained higher overall CO2 production due to its greater aeration rate. The findings also suggest that the biodrying of market waste with a high initial MC can achieve significant weight loss and leachate generation when paired with a high aeration rate of 0.6 m3/kg/day, with a 69.8% weight loss and increased waste compaction being recorded. The study suggests that variable ARs can optimize biodrying, making market waste more suitable for conversion to refuse-derived fuel or landfill pre-treatment and improving waste-to-energy processes and sustainability. © 2024 by the authors.


Keywords

No matching items found.


Last updated on 2025-20-03 at 00:00