Artificial Bee Colony Optimization for EEG Channel Selection in Subject Independent Motor Imagery BCI
Poster
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Sorawit Therdkiattikoon, Suthathip Maneewongvatan
ปีที่เผยแพร่ (ค.ศ.): 2025
ชื่อชุด: CCIS: Communications in Computer and Information Science
หน้าแรก: 529
ภาษา: English-United States (EN-US)
บทคัดย่อ
Motor Imagery-based Brain-Computer Interfaces (MI-BCIs) enable control of external devices through imagined movements, showing promise for assistive technologies. However, the use of numerous EEG sensors poses practical challenges. This research proposes a method to reduce EEG electrodes in MI-BCIs using the Artificial Bee Colony (ABC) algorithm for channel selection, cupled with Common Spatial Pattern (CSP) for feature extraction. Experiments were conducted on a public BCI Competition dataset featuring four movement classes recorded via 22 EEG and 3 EOG channels. Our ABC-based channel selection method, combined with CSP and Support Vector Machine classification, achieved 70.22% accuracy using only 12 channels, compared to 65.51% with all channels on subject-independent BCI. These findings demonstrate the feasibility of developing more practical MI-BCIs with fewer EEG electrodes, potentially enhancing assistive technology usability for individuals with motor disabilities.
คำสำคัญ
ไม่พบข้อมูลที่เกี่ยวข้อง