Methyl Gallate and Amoxicillin-Loaded Electrospun Poly(vinyl alcohol)/Chitosan Mats: Impact of Acetic Acid on Their Anti-Staphylococcus aureus Activity
Journal article
Authors/Editors
Strategic Research Themes
Publication Details
Author list: Pimsumon Jiamboonsri, Weradesh Sangkhun, Sompit Wanwong
Publisher: MDPI
Publication year: 2025
Volume number: 17
Issue number: 1
Start page: 17010007
ISSN: 2073-4360
eISSN: 2073-4360
URL: https://www.mdpi.com/2073-4360/17/1/7
Abstract
Methyl gallate (MG), a natural phenolic compound, exhibits in vitro synergistic activity with amoxicillin (Amox) against methicillin-resistant Staphylococcus aureus (MRSA), a global health concern. This study developed electrospun nanofibers incorporating MG and Amoxinto a poly(vinyl alcohol) (PVA)/chitosan (CS) blend to target both methicillin susceptible S. aureus (MSSA) and MRSA. The formulation was optimized, and the impact of acetic acid on antibacterial activity was evaluated using agar disc diffusion. The final formulation was fabricated and characterized using SEM, FTIR, DSC, swelling, and release behavior analyses to understand its antibacterial efficacy. Results revealed that acetic acid eliminated antibacterial activity, but MG (64 mg/mL) and Amox (2.5 mg/mL) were successfully incorporated into a PVA/CS solution prepared with deionized water. The resulting nanofiber mats featured nanoscale fibers (126 ± 45 nm) with and micron-oval beads. Despite the in vitro synergism, the MG/Amox/PVA/CS mats showednosignificant improvement over MG or Amox alone against MRSA, likely due to their physicochemical properties. FTIR and DSC results confirmed molecular interactions between the active compounds and the polymer matrix, which may cause a minimal swelling and low drug release at 24 h. This study offers insights into the potential of MG/Amox-loaded nanofibers for anti-MRSA material development.
Keywords
No matching items found.