Thermoelectrical vibration and bending analysis of multidirectional functionally graded circular piezoelectric porous sigmoid plate resting on variable elastic foundations

บทความในวารสาร


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งKumar P.; Aimmanee S.

ปีที่เผยแพร่ (ค.ศ.)2025

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-105008759473&doi=10.1007%2fs10999-025-09779-z&partnerID=40&md5=2c63bad659cd31080ffc050ba27a23e9

ภาษาEnglish-Great Britain (EN-GB)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

Abstract: This paper investigates the static bending deflection and vibration behavior of porous multidirectional functionally graded circular piezoelectric (MD-FGCP) plates resting on variable elastic foundations under thermoelectromechanical loading. The material properties of the MD-FGCP porous plate vary radially and through the thickness, following sigmoidal distributions, and account for both even and uneven porosity profiles. The plate consists of PZT-4 at the top and the PZT-5H at the bottom. The analysis employs modified first-order shear deformation theory (FSDT) with von Kármán nonlinear strains to derive the governing equations. The system is solved using an eight-node quadratic finite element (FE) formulation, ensuring high-order continuity and accurate geometric representation. The study explores the effects of various parameters, including radius-to-thickness ratio (R/h), porosity parameter (µ), bidirectional material exponents (n and m), boundary conditions, variable elastic foundation, thermal variations, and electrical loading. These factors significantly influence the static deflection, radial stress distribution, and natural frequencies of the plate. The solution approach is validated through convergence studies and comparison with existing literature. The findings highlight that variable elastic foundations and porosity distributions under thermoelectromechanical loading notably affect the static and dynamic responses of the MD-FGCP plate. This work provides valuable insights into the design and optimization of FGCP porous plate-based smart structures, with potential applications in MEMS, biomedical devices, and energy harvesting systems. The proposed approach offers a more accurate and efficient method for analyzing and designing these complex systems, leading to better performance and reliability in practical applications. © The Author(s), under exclusive licence to Springer Nature B.V. 2025.


คำสำคัญ

ไม่พบข้อมูลที่เกี่ยวข้อง


อัพเดทล่าสุด 2025-15-07 ถึง 00:00