Emergence of a bandgap in nano-scale graphite: A computational and experimental study
บทความในวารสาร
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Chaiyachad S., Vo T.-P., Jindata W., Singsen S., Eknapakul T., Jaisuk C., Fevre P.L., Bertran F., Lu D., Huang Y., Nakajima H., Liewrian W., Fongkaew I., Minár J., Meevasana W.
ผู้เผยแพร่: Elsevier
ปีที่เผยแพร่ (ค.ศ.): 2025
วารสาร: Applied Surface Science (0169-4332)
Volume number: 708
นอก: 0169-4332
eISSN: 1873-5584
ภาษา: English-Great Britain (EN-GB)
บทคัดย่อ
Bandgaps in layered materials are critical for enabling functionalities such as tunable photodetection, efficient energy conversion, and nonlinear optical responses, which are essential for next-generation photonic and quantum devices. Gap engineering could form heterostructures with complementary materials like transition metal dichalcogenides or perovskites for multifunctional devices. Graphite, conventionally regarded as a gapless material, exhibits a bandgap of ∼100 meV in nano-scale patterned highly oriented pyrolytic graphite (HOPG), as revealed by angle-resolved photoemission spectroscopy (ARPES) and Raman measurements. Our state-of-the-art calculations, incorporating photoemission matrix element effects, predict this bandgap with remarkable accuracy and attribute it to mechanical distortions introduced during patterning. This work bridges theory and experiment, providing the direct evidence of a tunable bandgap in HOPG. Beyond its fundamental significance, this finding opens new possibilities for designing materials with tailored electronic properties, enabling advancements in terahertz devices and optoelectronics. © 2025
คำสำคัญ
ไม่พบข้อมูลที่เกี่ยวข้อง