Selective conversion of aqueous sorbitol to sorbitan by amorphous Silica-Alumina catalysts

Journal article


Authors/Editors


Strategic Research Themes


Publication Details

Author listLertthanaphol N.; Sereerattanakorn P.; Tulaphol S.; Maihom T.; Phung T.K.; Garbarino G.; Busca G.; Wittayakun J.; Jaeger V.; Lalvani S.B.; Sathitsuksanoh N.

PublisherElsevier

Publication year2025

JournalChemical Engineering Journal (1385-8947)

Volume number511

ISSN1385-8947

eISSN1873-3212

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-105001576047&doi=10.1016%2fj.cej.2025.161918&partnerID=40&md5=f94f0b64ccac5ab6fbc5dc04ba24767c

LanguagesEnglish-Great Britain (EN-GB)


View on publisher site


Abstract

Biomass-derived chemicals are key enablers of a circular bioeconomy, offering renewable solutions to mitigate climate change. Notably, 1,4-sorbitan is a versatile platform chemical for food, chemical, and pharmaceutical industries. We can obtain 1,4-sorbitan from solid acid-catalyzed dehydration of biomass-derived sorbitol. However, the instability and poor selectivity of most solid acid catalysts in aqueous sorbitol significantly hinder the efficient production of 1,4-sorbitan, limiting their industrial viability. Here, we show that the hydrothermal stability and optimal Brønsted acid strength of commercial amorphous silica-alumina with 40 wt% silica enabled high selectivity of 1,4-sorbitan (65 %) derived from aqueous sorbitol. The silica in amorphous silica-alumina catalysts provided optimal Brønsted acidity that minimized the degradation of the desired 1,4-sorbitan product by preventing further dehydration to isosorbide and polymerization to coke. Moreover, the silica content in amorphous silica-alumina catalysts improved the hydrothermal stability and prevented the phase transformation of the γ-alumina matrix. Our findings demonstrate that amorphous silica-alumina is a highly selective catalyst for 1,4-sorbitan production from aqueous sorbitol, and amorphous silica-alumina offers enhanced stability. These findings pave the way for designing improved solid acid catalysts for other sustainable, aqueous biomass conversions. © 2025


Keywords

No matching items found.


Last updated on 2025-19-07 at 00:00