Manganese oxide and urea-assisted engineering of nickel-iron compounds for high-performance battery-supercapacitor hybrid devices

บทความในวารสาร


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งDong S.-F.; Cheshideh H.; Kongvarhodom C.; Saukani M.; Yougbaré S.; Chen H.-M.; Wu Y.-F.; Lin L.-Y.

ผู้เผยแพร่Elsevier

ปีที่เผยแพร่ (ค.ศ.)2025

วารสารJournal of Environmental Chemical Engineering (2213-2929)

Volume number13

Issue number3

นอก2213-2929

eISSN2213-3437

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-105008682069&doi=10.1016%2fj.jece.2025.117142&partnerID=40&md5=2e168e9e408b809c13427c84fe3092f9

ภาษาEnglish-Great Britain (EN-GB)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

Nickel-iron metal-organic framework (NiFe-MOF) has emerged as a promising active material for energy storage due to its large surface area, tunable porosity, and multiple redox states. However, its inherently poor electrical conductivity hinders charge transport, limiting energy and power densities. Enhancing conductivity and optimizing the structural configuration are crucial for improving electrochemical properties. MnO2 exhibits strong pseudocapacitive behavior due to multiple oxidation states, while urea regulates pH and modulates material nucleation and growth. In this study, Mn ions and urea are simultaneously introduced into NiFe-MOF to tailor electronic and structural properties, facilitating efficient charge storage for battery-supercapacitor hybrids (BSHs). Influences of Mn ions and urea concentrations on morphology, composition, and electrochemical properties are systematically examined. The optimized MnO2/NiFe-MOF electrode achieves a remarkable specific capacitance (CF) of 1423.0 F/g, corresponding to a specific capacity of 996 C/g at 20 mV/s, attributed to well-ordered sheet-like structures that maximize electrolyte accessibility and charge-transport pathways. A BSH assembled with the optimized MnO2/NiFe-MOF positive electrode and a carbon-based negative electrode demonstrates a superior energy density of 2.0 kWh/cm2 at a power density of 6.4 W/cm2, along with outstanding cycling durability with the CF retention of 88.8% and Coulombic efficiency of 96.7 % after 6000 charge/discharge cycles. © 2025 Elsevier Ltd.


คำสำคัญ

ไม่พบข้อมูลที่เกี่ยวข้อง


อัพเดทล่าสุด 2025-01-09 ถึง 12:00