Investigating nanotoxicity: uncovering associations and predictive factors through machine learning analysis of published literature

บทความในวารสาร


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งLiangruksa M.; Udomsopagit P.; Sriratanophast K.; Charoenwong P.; Kanjanakumnerd P.; Laomettachit T.; Teerapittayanon S.

ผู้เผยแพร่Royal Society of Chemistry

ปีที่เผยแพร่ (ค.ศ.)2025

Volume number12

Issue number6

หน้าแรก3158

หน้าสุดท้าย3172

จำนวนหน้า15

นอก2051-8153

eISSN2051-8161

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-105004062345&doi=10.1039%2fd4en00814f&partnerID=40&md5=e76fd23a1a562dba76c666f0077ded3e

ภาษาEnglish-United States (EN-US)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

Nanotoxicity has become a major concern of human health due to the extensive applications of nanomaterials in several fields. This study investigates nanotoxicity by combining association rule mining and supervised machine learning to overcome their limitations when used independently. The data were collected from published literature, which included nanomaterial properties, experimental protocols, and toxicity outcomes. Association rule mining is employed to identify significant associations and hidden patterns. Meanwhile, supervised learning algorithms offer predictive power towards unseen data. As a result, the XGBoost model demonstrates the highest accuracy, reaching approximately 90%. The analysis of feature importance suggests that toxicity is significantly influenced by coat/functional and material. Concurrently, rule mining and classification machine learning results reveal that testing protocols hold equivalent significance to material traits regarding their impact on toxicity. This allows us to gain deeper insights and understanding of nanotoxicity and its influencing factors, facilitating the development of nanoparticle designs, regulations, and standards that promote the safe use and disposal of nanomaterials. © 2025 The Royal Society of Chemistry.


คำสำคัญ

ไม่พบข้อมูลที่เกี่ยวข้อง


อัพเดทล่าสุด 2025-01-08 ถึง 00:00