Machine learning based fingerprint pattern recognition with Mach-Zehnder Interferometer
Conference proceedings article
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Usman A.; Khun-In R.; Bhatranand A.; Chayawan C.; Muhammad K.S.; Buranasiri P.
ผู้เผยแพร่: Society of Photo-optical Instrumentation Engineers
ปีที่เผยแพร่ (ค.ศ.): 2025
วารสาร: Proceedings of SPIE (0277-786X)
Volume number: 13518
ISBN: 978-151068829-2
นอก: 0277-786X
eISSN: 1996-756X
ภาษา: English-Great Britain (EN-GB)
บทคัดย่อ
Fingerprints serve as an excellent means of individual identification. This study employed transmission-mode image detection using a Mach-Zehnder interferometer to produce two-dimensional fingerprint images. The research aims to develop a fingerprint pattern recognition system by integrating novel algorithms for ridge orientation analysis. The fingerprint patterns considered in this study include loops, arches, and whorls. The objective is to achieve high-resolution fingerprint patterns to analyze fingerprint variability, distinguish foreground from background regions, and trace ridge line orientations. The recognition algorithm is implemented using image processing techniques, with a preprocessing workflow that includes binarization, resizing, and histogram equalization for image enhancement. After preprocessing, the image undergoes ridge orientation analysis using the gradient method, and both similarity scores and pattern categorization were successfully achieved. The algorithm's performance was evaluated through MATLAB simulations, with results demonstrating the proposed system's accuracy and reliability across various fingerprint samples. The interferometric setup was also adapted to recognize microorganisms within a microfluidic channel, highlighting its potential applications in biometrics, forensics, and medical diagnostics. © 2025 SPIE.
คำสำคัญ
ไม่พบข้อมูลที่เกี่ยวข้อง