Optimization of Process Parameters for Advanced High-Strength Steel JSC980Y Automotive Part Using Finite Element Simulation and Deep Neural Network
บทความในวารสาร
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Aekkapon Sunanta and Surasak Suranuntchai
ผู้เผยแพร่: MDPI
ปีที่เผยแพร่ (ค.ศ.): 2025
ชื่อย่อของวารสาร: J. Manuf. Mater. Process. (JMMP)
Volume number: 9
Issue number: 6
eISSN: 2504-4494
ภาษา: English-United States (EN-US)
บทคัดย่อ
In the stamping process of automotive parts, springback is a major problem when using Advanced High-Strength Steel (AHSS). This phenomenon significantly impacts the shape accuracy of products and is difficult to control. This study aims to optimize process parameters such as blank holder force (BHF), die clearance, and blank width to minimize springback in the workpiece. Using optimal process parameters will enhance the efficiency of die compensation processes. The study uses the Finite Element Method (FEM) simulation to predict forming behavior. The case study, Reinforcement-CTR PLR, is made from AHSS grade JSC980Y with a thickness of 1 mm. Four material models combination were evaluated against actual experiment results to select the most accurate springback prediction model. A full factorial design was used for experiments with varied process parameter. The optimization process used regression and various Artificial Neural Networks (ANNs). From the result, a Deep Neural Network (DNN) with two hidden layers performed with the highest accuracy compared to the other models. The optimal process parameters were identified as 27.62 tons BHF, 1mm die clearance, and 290 mm blank width. These optimal results achieved 98.05% of the part area within a displacement tolerance of -1 to 1 mm, closely matching FEM-based validation.
คำสำคัญ
ไม่พบข้อมูลที่เกี่ยวข้อง