A Study of Unified Framework for Extremism Classification, Ideology Detection, Propaganda Analysis, and Flagged Data Detection Using Transformers

บทความในวารสาร


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งR S Lakshmi Balajia, C S Thiruvenkataswamy, Malathy Batumalay, N. Duraimutharasan, Amar Dev Thirukulam Devadas, Thaweesak Yingthawornsuk

ปีที่เผยแพร่ (ค.ศ.)2025

Volume number6

Issue number3

หน้าแรก1791

หน้าสุดท้าย1810

จำนวนหน้า20

นอกISSN 2723-6471

ภาษาEnglish-United States (EN-US)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

The rise of extremism and its rapid dissemination through propaganda channels have become pressing global challenges, threatening peace, security, and social cohesion. This study aligns with the United Nations Sustainable Development Goal 16 by proposing a unified framework leveraging advanced machine learning and large language models to combat extremism through extremism classification, ideology detection, propaganda analysis, and flagged word recognition. This framework introduces process innovation by integrating state-of-the-art transformer models such as BERT, RoBERTa, DistilBERT and XLNet to streamline the analysis process and overcome traditional limitations in extremism detection with exceptional performance: 90.00% accuracy for extremism classification, 98.82% accuracy for ideology detection, and 99.71% accuracy for flagged word recognition. While the proposed approach demonstrates high precision and recall, it faces challenges such as potential data bias, ethical concerns in dataset usage and the risk of false positives, which could lead to misclassification of benign content. The inclusion of multilingual capabilities broadens the applicability of the framework but variations in linguistic structures and cultural contexts introduce complexities in model generalization. Additionally, ethical considerations in handling extremist content, especially in social media data collection, necessitate stringent privacy safeguards to prevent unintended harm. By providing actionable insights, this research contributes to counterextremism efforts in areas such as online content moderation, law enforcement and intelligence analysis, laying a foundation for future advancements in safeguarding global security which enhance the process innovation.


คำสำคัญ

ไม่พบข้อมูลที่เกี่ยวข้อง


อัพเดทล่าสุด 2025-28-08 ถึง 00:00