Thai Humor Generation by Small Language Models
Conference proceedings article
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Sirinaovakul B.; Muansuwan N.; Suwannahong K.; Limseelo C.; Chaithong S.; Poobanchuen P.
ผู้เผยแพร่: Institute of Electrical and Electronics Engineers Inc.
ปีที่เผยแพร่ (ค.ศ.): 2025
ISBN: 9798331522230
ภาษา: English-Great Britain (EN-GB)
บทคัดย่อ
Despite the impressive capabilities of generative AI across multiple languages, generating humor that aligns with Thai cultural and linguistic nuances remains a significant challenge. Thai humor often relies on context, wordplay, and socio-cultural references, making it difficult for generic models to produce authentic jokes. This paper presents a focused approach to address this limitation by fine-tuning small language models (SLMs) on high-quality, non-synthetic Thai humor datasets. Llama-3.2-3B model was leveraged and Low-Rank Adaptation (LoRA) was employed for efficient parameter tuning, ensuring computational efficiency suitable for low-resource settings. Our work highlights humor as a critical benchmark for evaluating AI's understanding of language semantics and cultural context. A comprehensive evaluation was conducted with Thai participants to ensure the generated humor resonates with real-world cultural expectations. © 2025 Elsevier B.V., All rights reserved.
คำสำคัญ
ไม่พบข้อมูลที่เกี่ยวข้อง






