An Enhanced Lightweight Framework with Selective Kernel and Attention for FER using Modified Bottleneck
Conference proceedings article
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Shahzad Ali; Pisit Vanichchanunt; Charnchai Pluempitiwiriyawej; Kosuke Takano; Naveed Sultan; Ratchatin Chancharoen; Lunchakorn Wuttisittikulkij
ปีที่เผยแพร่ (ค.ศ.): 2025
หน้าแรก: 12
หน้าสุดท้าย: 16
จำนวนหน้า: 5
URL: https://ieeexplore.ieee.org/document/11282414
ภาษา: English-United States (EN-US)
บทคัดย่อ
Facial Expression Recognition (FER) plays an important role in enabling machines to interpret human emotions. While recent advances have led to high-performing models and many of these remain too computationally demanding for use on resource-limited devices. In this work, we introduce a compact yet effective FER model based on modified inverted residual blocks, augmented with two well known key modules: the Coordinate Attention (CA) for enhance spatial attention by encoding directional relationships across facial regions and a depthwise convolution-based Selective Kernel (SK) module for dynamically adjusts receptive fields by selecting from multiple kernel sizes. We have evaluated on the RAF-DB and FER2013 benchmarks, it achieves accuracies of 86.83 % and 70.25 %, respectively, with a model size of only 1.17 million parameters compared to the lightweight state-of-the-art-models. These results highlight the model's ability to making it well-suited for deployment on edge devices.
คำสำคัญ
Attention mechanisms, Convolutional neural network, Emotion, Facial expression, Kernel, mobilenet, Recognition






