The advantages and disadvantages of kalman filtering in iterative learning control
Conference proceedings article
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
ไม่พบข้อมูลที่เกี่ยวข้อง
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Panomruttanarug B., Longman R.W.
ปีที่เผยแพร่ (ค.ศ.): 2008
Volume number: 130 PART 1
หน้าแรก: 347
หน้าสุดท้าย: 365
จำนวนหน้า: 19
ISBN: 9780877035442
นอก: 0065-3438
eISSN: 0065-3438
ภาษา: English-Great Britain (EN-GB)
บทคัดย่อ
Iterative learning control (ILC) can eliminate deterministic tracking errors of a control system that repeatedly performs the same tracking maneuver. It iterates with the real world rather than with a model aiming to achieve this zero error, and hence it can achieve lower final error levels in the real world than one could obtain when limiting oneself to using a mathematical model aiming to achieve zero tracking error. There are spacecraft applications when fine pointing sensors perform repeated scans. When there is substantial plant and measurement noise, it is natural to consider using a Kalman filter to improve the signal used by the learning control law. In a separate work, this was analyzed for the sister field of repetitive control (RC). It was observed that when the model in the Kalman filter is imperfect, the use of a Kalman filter can make the final error levels worse rather than better, and care must be taken to assess the benefit in reduced random variations compared to the deterministic error introduced. This is also the case when there are unmodeled repeating external disturbances. Here we show that the same situation applies to ILC if one uses a Kalman filter running in time steps during each iteration. But one can reformulate the Kalman filter to operate in the repetition or iteration domain, and when this is done, one can still converge to zero expected value of the tracking error in the presence of model errors and external repeating disturbances.
คำสำคัญ
ไม่พบข้อมูลที่เกี่ยวข้อง