Some random fixed point theorems for random asymptotically regular operators

บทความในวารสาร


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์

ไม่พบข้อมูลที่เกี่ยวข้อง


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งKumam P., Plubtieng S.

ผู้เผยแพร่Warsaw University

ปีที่เผยแพร่ (ค.ศ.)2009

วารสารDemonstratio Mathematica- Politechnika Warszawska (0420-1213)

Volume number42

Issue number1

หน้าแรก131

หน้าสุดท้าย141

จำนวนหน้า11

นอก0420-1213

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84902498268&partnerID=40&md5=777e121780f32aa1433352242e3a2726

ภาษาEnglish-Great Britain (EN-GB)


บทคัดย่อ

Let (Ω, ∑) be a measurable space, X a Banach space, C a weakly compact convex subset of X and T : Ω × C -→ C a random operator. Let WCS(X) be the weakly convergent sequence coefficient of X and κω its Lifschitz characteristic. If T is asymptotically regular and assume that there exists ω ∈ Ωand constant c such that, σ(T(ω, ))≤ c< 1+√1+4WCS(X) (κω(X) -1we prove that T has a random fixed point. © 2009 Warsaw University. All rights reserved.


คำสำคัญ

Lifschititz characteristicRandom asymptotically regularUniformly lipschitzian mapping


อัพเดทล่าสุด 2022-06-01 ถึง 15:29