Pathway activity inferences with negatively correlated features for pancreatic cancer classification

Conference proceedings article


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์

ไม่พบข้อมูลที่เกี่ยวข้อง


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งSootanan P., Prom-on S., Meechai A., Chan J.H.

ผู้เผยแพร่Hindawi

ปีที่เผยแพร่ (ค.ศ.)2009

ISBN9781424441341

นอก0146-9428

eISSN1745-4557

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-74049139643&doi=10.1109%2fBMEI.2009.5305092&partnerID=40&md5=77cb55460489b6d532eaa1fcfa0529f6

ภาษาEnglish-Great Britain (EN-GB)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

Pathway-based analysis has been extended to perform disease classification of expression profiles. In this study, gene sets of related pathways of pancreatic cancer from KEGG are used for microarray-based pancreatic cancer classification by using pathway activity inferences with negatively correlated features. Pearson's correlation coefficient (PC) has been determined to be a suitable distance-based feature selection method with negatively correlated features. The results from classification performance when using gene sets in related pathways of pancreatic cancer suggest that not all related pathways are relevant to this disease, and the Jak-STAT signaling pathways is the most significant pathway. Pathway activity metrics of the proposed method with negatively correlated features can increase discriminative score and classification performance in many gene sets of related pathway of pancreatic cancer when compared to the original method of Lee et al. [7]. ฉ2009 IEEE.


คำสำคัญ

Negatively correlated featuresPancreatic cancer classificationPathway activityPathway-based microarray analysisPathway markers


อัพเดทล่าสุด 2023-27-09 ถึง 07:35