Improving performance of asynchronous BCI by using a collection of overlapping sub window models

Conference proceedings article


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์

ไม่พบข้อมูลที่เกี่ยวข้อง


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งSuppakun N., Maneewongvatana S.

ผู้เผยแพร่Hindawi

ปีที่เผยแพร่ (ค.ศ.)2009

ISBN9781605587929

นอก0146-9428

eISSN1745-4557

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-70449635230&doi=10.1145%2f1592700.1592721&partnerID=40&md5=0c35c6a87d2d8423b25b32d0ec94d323

ภาษาEnglish-Great Britain (EN-GB)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

Asynchronous Brain Computer Interfaces (BCI) have become an interesting topic in the present days because they provide simulation of realistic usage of BCI. For asynchronous BCI, the computer has to discriminate not only differences among various imaginary tasks but also detect relax periods. Since the training phase for building a classification model is still synchronous (cue-based), the main challenge is to classify the EEG signal continuously with good accuracy on asynchronous (uncue-based). This paper addresses achieving better performance by using a collection of overlapping sub windows models. A model is referred to a primitive classification model which consists of common spatial patterns (CSP) with linear discriminant analysis (LDA). Each primitive model was trained with the corresponding sub window indexes. We had 3 collections of models: task1 vs. task2, task1 vs. relax, and task2 vs. relax. These binary classification results were then fused together with Mahalanobis distance to gain better performance. The results were measured by mean square error (MSE), and their performance is better compared to the primitive model. Furthermore, the results on the test set were comparable to the 3 leading scores of BCI Competition IV dataset 1. ฉ ACM 2009.


คำสำคัญ

Asynchronous BCIBrain-computer interfaceMotor imagery


อัพเดทล่าสุด 2023-04-10 ถึง 07:35