On assigning individuals from cryptic population structures to optimal predicted subpopulations: An empirical evaluation of non-parametric population structure analysis techniques
Conference proceedings article
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
ไม่พบข้อมูลที่เกี่ยวข้อง
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Deejai P., Assawamakin A., Wangkumhang P., Poomputsa K., Tongsima S.
ผู้เผยแพร่: Springer Verlag (Germany): Computer Proceedings
ปีที่เผยแพร่ (ค.ศ.): 2010
Volume number: 115 CCIS
หน้าแรก: 58
หน้าสุดท้าย: 70
จำนวนหน้า: 13
ISBN: 3642167497; 9783642167492
นอก: 1865-0929
ภาษา: English-Great Britain (EN-GB)
ดูในเว็บของวิทยาศาสตร์ | ดูบนเว็บไซต์ของสำนักพิมพ์ | บทความในเว็บของวิทยาศาสตร์
บทคัดย่อ
Many algorithms have been proposed to analyze population structures from the single nucleotide polymorphism (SNP) genotyping data of some number of individuals and try to assign individuals to genetically similar groups. These algorithms can be categorized into two computational paradigms: parametric and non-parametric approaches. Although the parametric-based approach is a gold standard for population structure analysis, the computational burden incurred by running these algorithms is unacceptable for large complex dataset. As genotyping platforms incorporating more SNPs, analyzing ever larger and more complex datasets are becoming a standard practice. Hence, the computationally efficient non-parametric methods for analysis of genotypic datasets are needed to reveal the population structure. In this study, we evaluated two leading non-parametric population structure analysis techniques, namely ipPCA and AWclust, on their abilities to characterize the genetic diversity and population structure of two complex SNP genotype datasets (as many as 243855 SNPs). The head-to-head comparisons were conducted on two major aspects: ability to infer the number of genetically related subpopulations (K) and ability to correctly assign individuals to these subpopulations. The experimental results suggested that AWclust could be more suitable when applying to a small and less complex dataset. However, with a large and more complex dataset, ipPCA is a much better choice yielding higher accuracy on assigning genetically similar individuals to the inferred groups. ฉ 2010 Springer-Verlag Berlin Heidelberg.
คำสำคัญ
non-parametric-based method, parametric-based method, Population genetic, population genetic structure






