Performance of solid oxide electrolysis cells based on composite La0.8Sr0.2MnO3-δ - yttria stabilized zirconia and Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen electrodes

บทความในวารสาร


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์

ไม่พบข้อมูลที่เกี่ยวข้อง


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งKim-Lohsoontorn P., Brett D.J.L., Laosiripojana N., Kim Y.-M., Bae J.-M.

ผู้เผยแพร่Elsevier

ปีที่เผยแพร่ (ค.ศ.)2010

วารสารInternational Journal of Hydrogen Energy (0360-3199)

Volume number35

Issue number9

หน้าแรก3958

หน้าสุดท้าย3966

จำนวนหน้า9

นอก0360-3199

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-77950338811&doi=10.1016%2fj.ijhydene.2010.02.039&partnerID=40&md5=0de23747691ac28a58e19508e985bfda

ภาษาEnglish-Great Britain (EN-GB)


ดูในเว็บของวิทยาศาสตร์ | ดูบนเว็บไซต์ของสำนักพิมพ์ | บทความในเว็บของวิทยาศาสตร์


บทคัดย่อ

The electrochemical performance of solid oxide electrolysis cells (SOECs) having barium strontium cobalt ferrite (Ba0.5Sr0.5Co0.8Fe0.2O3-δ) and composite lanthanum strontium manganite-yttria stabilized zirconia (La0.8Sr0.2MnO3-δ-YSZ) oxygen electrodes has been studied over a range of operating conditions. Increasing the operating temperature (973 K to 1173 K) significantly increased electrochemical performance and hydrogen generation efficiency for both systems. The presence of water in the hydrogen electrode was found to have a marked positive effect on the EIS response of solid oxide cell (SOC) under open circuit voltage (OCV). The difference in operation between electrolytic and galvanic modes was investigated. Cells having BSCF oxygen electrodes (Ni-YSZ/YSZ/BSCF) showed greater performance than LSM-YSZ-based cells (Ni-YSZ/YSZ/LSM-YSZ) over the range of temperatures, in both galvanic and electrolytic regimes of operation. The area specific resistance (ASR) of the LSM-YSZ-based cells remained unchanged when transitioning between electrolyser and fuel cell modes; however, the BSCF cells exhibited an overall increase in cell ASR of ∼2.5 times when entering electrolysis mode. Durability studies of cells in electrolysis mode were made over 20 h periods. Significant degradation of the BSCF cell was observed (0.02 V h-1) while the LSM-YSZ cell exhibited more stable performance under the same operating conditions (0.3 A cm-2, 1123 K, and H2O/H2 = 70/30). Increasing the electrolysis current density accelerated performance degradation. Electrochemical impedance spectroscopy measurements and microstructure analysis were used to investigate the cause of performance degradation, with evidence emerging of microstructural change in the case of the BSCF electrode. © 2010 Professor T. Nejat Veziroglu.


คำสำคัญ

ไม่พบข้อมูลที่เกี่ยวข้อง


อัพเดทล่าสุด 2023-26-09 ถึง 07:35