Neural-fuzzy control system application for monitoring process response and control of anaerobic hybrid reactor in wastewater treatment and biogas production

บทความในวารสาร


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์

ไม่พบข้อมูลที่เกี่ยวข้อง


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งWaewsak C., Nopharatana A., Chaiprasert P.

ผู้เผยแพร่Elsevier

ปีที่เผยแพร่ (ค.ศ.)2010

วารสารJournal of Environmental Sciences (1001-0742)

Volume number22

Issue number12

หน้าแรก1883

หน้าสุดท้าย1890

จำนวนหน้า8

นอก1001-0742

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-78649944143&doi=10.1016%2fS1001-0742%2809%2960334-X&partnerID=40&md5=ad3f52388bcb80ea36986a46e8b6cfc7

ภาษาEnglish-Great Britain (EN-GB)


ดูในเว็บของวิทยาศาสตร์ | ดูบนเว็บไซต์ของสำนักพิมพ์ | บทความในเว็บของวิทยาศาสตร์


บทคัดย่อ

Based on the developed neural-fuzzy control system for anaerobic hybrid reactor (AHR) in wastewater treatment and biogas production, the neural network with backpropagation algorithm for prediction of the variables pH, alkalinity (Alk) and total volatile acids (TVA) at present day time t was used as input data for the fuzzy logic to calculate the influent feed flow rate that was applied to control and monitor the process response at different operations in the initial, overload influent feeding and the recovery phases. In all three phases, this neural-fuzzy control system showed great potential to control AHR in high stability and performance and quick response. Although in the overloading operation phase II with two fold calculating influent flow rate together with a two fold organic loading rate (OLR), this control system had rapid response and was sensitive to the intended overload. When the influent feeding rate was followed by the calculation of control system in the initial operation phase I and the recovery operation phase III, it was found that the neural-fuzzy control system application was capable of controlling the AHR in a good manner with the pH close to 7, TVA/Alk < 0.4 and COD removal > 80% with biogas and methane yields at 0.45 and 0.30 m3/kg COD removed. ฉ 2010 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences.


คำสำคัญ

Influent feed flow rateNeural-fuzzy control systemProcess response


อัพเดทล่าสุด 2023-13-10 ถึง 07:35