GPGPU acceleration algorithm for medical image reconstruction

Conference proceedings article


ผู้เขียน/บรรณาธิการ


กลุ่มสาขาการวิจัยเชิงกลยุทธ์

ไม่พบข้อมูลที่เกี่ยวข้อง


รายละเอียดสำหรับงานพิมพ์

รายชื่อผู้แต่งArchirapatkave V., Sumilo H., See S.C.W., Achalakul T.

ผู้เผยแพร่Hindawi

ปีที่เผยแพร่ (ค.ศ.)2011

หน้าแรก41

หน้าสุดท้าย46

จำนวนหน้า6

ISBN9780769544281

นอก0146-9428

eISSN1745-4557

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-80051617305&doi=10.1109%2fISPA.2011.18&partnerID=40&md5=0d32c20010afe0dfddef8b25e550dfed

ภาษาEnglish-Great Britain (EN-GB)


ดูบนเว็บไซต์ของสำนักพิมพ์


บทคัดย่อ

Medical imaging techniques such as X-ray, Ultrasound, CT and MRI scan are widely used for diagnosis. The 2D medical images from these scans are difficult to interpret because they can only show cross section views of a human body. Interpreting these images requires experts or trained professionals. Reconstructing 2D images into 3D models can help with the interpretation process. However, such model reconstruction is normally time-consuming and costly. It requires high performance computation, such as grid or parallel computing. This research, thus, proposes a high performance 3D reconstruction method using the General-Purpose computation on Graphics Processing Units (GPGPU). The GPGPU has a high computational performance. Parallel computing method on GPU can thus regenerate a model for real-time 3D visualization. In other words, the GPU computational speed sufficiently improves the visualization effectiveness of both images and models to the point where a real-time navigation of the data set is possible. In our work, the 3D reconstruction process reconstructs a set of 2D cross-section images and stacks them to generate a volume data, and then transform them into a 3D model. The generated models are then displayed on the user interface developed with OpenGL. Finally, the performance of the GPU acceleration is presented in this paper. ฉ 2011 IEEE.


คำสำคัญ

3D reconstructionCUDAGPGPUMarching cubeParallel Algorithm


อัพเดทล่าสุด 2023-17-10 ถึง 07:35