Pathway-based multi-class classification of lung cancer
Conference proceedings article
ผู้เขียน/บรรณาธิการ
ไม่พบข้อมูลที่เกี่ยวข้อง
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
ไม่พบข้อมูลที่เกี่ยวข้อง
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Engchuan W., Chan J.H.
ผู้เผยแพร่: Springer
ปีที่เผยแพร่ (ค.ศ.): 2012
Volume number: 7667 LNCS
Issue number: PART 5
หน้าแรก: 697
หน้าสุดท้าย: 702
จำนวนหน้า: 6
ISBN: 9783642344992
นอก: 0302-9743
ภาษา: English-Great Britain (EN-GB)
บทคัดย่อ
The advances in high throughput microarray technology have enabled genome-wide expression analysis to identify diagnostic biomarkers of various disease states. In this work, muti-class classification of lung cancer data is developed based on our previous accurate and robust binary-class classification using pathway activity data. In particular, the pathway activity of each pathway was inferred using a Negatively Correlated Feature Set (NCFS) method based on curated pathway data from MSigDB, which combines pathway data of many public databases such as KEGG, PubMed, BioCarta, etc. The developed technique was tested on three independent datasets as well as a merged dataset. The results show that using a two-stage binary classification process on independent datasets provided the best performance. Nonetheless, the multi-class SVM technique also yielded acceptable results. ฉ 2012 Springer-Verlag.
คำสำคัญ
gene expression analysis, lung cancer, multi-class classification, SVM