Neighborhood components analysis in sEMG signal dimensionality reduction for gait phase pattern recognition
Conference proceedings article
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
ไม่พบข้อมูลที่เกี่ยวข้อง
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Manit J., Youngkong P.
ผู้เผยแพร่: Hindawi
ปีที่เผยแพร่ (ค.ศ.): 2011
หน้าแรก: 86
หน้าสุดท้าย: 90
จำนวนหน้า: 5
ISBN: 9781467307680
นอก: 0146-9428
eISSN: 1745-4557
ภาษา: English-Great Britain (EN-GB)
บทคัดย่อ
Dimensionality reduction technique is an essential method for sEMG signal pattern recognition and classification, especially for real-time application such as prosthesis control. This technique can reduce the high dimension extracted feature into a lower dimension space feature which help the classifier works more properly. This paper presents an application of a dimensionality reduction technique called neighborhood components analysis (NCA). We evaluate the efficiency of NCA by comparing its class separability and the classification accuracy with other three algorithms: principle component analysis (PCA), linear discriminant analysis (LDA) and local preserving projection (LPP). The result shows that NCA outperform other algorithm in the class separability, and its classification accuracy is also slightly higher. ฉ 2011 IEEE.
คำสำคัญ
dimensionality reduction, gait phase, myoelectric, neighborhood components analysis (NCA), Pattern recognition, surface electromyography (sEMG)