Human gesture recognition using Kinect camera
Conference proceedings article
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
ไม่พบข้อมูลที่เกี่ยวข้อง
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Patsadu O., Nukoolkit C., Watanapa B.
ผู้เผยแพร่: Hindawi
ปีที่เผยแพร่ (ค.ศ.): 2012
หน้าแรก: 28
หน้าสุดท้าย: 32
จำนวนหน้า: 5
ISBN: 9781467319218
นอก: 0146-9428
eISSN: 1745-4557
ภาษา: English-Great Britain (EN-GB)
บทคัดย่อ
In this paper, we propose a comparison of human gesture recognition using data mining classification methods in video streaming. In particular, we are interested in a specific stream of vector of twenty body-joint positions which are representative of the human body captured by Kinect camera. The recognized gesture patterns of the study are stand, sit down, and lie down. Classification methods chosen for comparison study are backpropagation neural network, support vector machine, decision tree, and naive Bayes. Experimental results have shown that the backpropagation neural network method outperforms other classification methods and can achieve recognition with 100% accuracy. Moreover, the average accuracy of all classification methods used in this study is 93.72%, which confirms the high potential of using the Kinect camera in human body recognition applications. Our future work will use the knowledge obtained from these classifiers in time series analysis of gesture sequence for detecting fall motion in a smart home system. ฉ 2012 IEEE.
คำสำคัญ
Body-Joint Positions, Classification Methods, Human Gesture Recognition, Kinect Camera, Video Streaming