Effect of material nonlinearity on large deflection of variable-arc-length beams subjected to uniform self-weight
บทความในวารสาร
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
ไม่พบข้อมูลที่เกี่ยวข้อง
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Athisakul C., Phungpaingam B., Juntarakong G., Chucheepsakul S.
ผู้เผยแพร่: Hindawi
ปีที่เผยแพร่ (ค.ศ.): 2012
วารสาร: Mathematical Problems in Engineering (1024-123X)
Volume number: 2012
นอก: 1024-123X
eISSN: 1563-5147
ภาษา: English-Great Britain (EN-GB)
ดูในเว็บของวิทยาศาสตร์ | ดูบนเว็บไซต์ของสำนักพิมพ์ | บทความในเว็บของวิทยาศาสตร์
บทคัดย่อ
This paper presents a large deflection of variable-arc-length beams, which are made from nonlinear elastic materials, subjected to its uniform self-weight. The stress-strain relation of materials obeys the Ludwick constitutive law. The governing equations of this problem, which are the nonlinear differential equations, are derived by considering the equilibrium of a differential beam element and geometric relations of a beam segment. The model formulation presented herein can be applied to several types of nonlinear elastica problems. With presence of geometric and material nonlinearities, the system of nonlinear differential equations becomes complicated. Consequently, the numerical method plays an important role in finding solutions of the presented problem. In this study, the shooting optimization technique is employed to compute the numerical solutions. From the results, it is found that there is a critical self-weight of the beam for each value of a material constant n. Two possible equilibrium configurations (i.e., stable and unstable configurations) can be found when the uniform self-weight is less than its critical value. The relationship between the material constant n and the critical self-weight of the beam is also presented. ฉ 2012 Chainarong Athisakul et al.
คำสำคัญ
ไม่พบข้อมูลที่เกี่ยวข้อง